Power Aware Metrics for Wireless Sensor Networks* Ayad Salhieh Department of ECE Wayne State University Detroit, MI 48202 ai4874@wayne.edu Loren Schwiebert Department of Computer Science Wayne State University Detroit, MI 48202 loren@cs.wayne.edu #### **ABSTRACT** Energy conservation is a critical issue in wireless sensor networks for node and network life, as the nodes are powered by batteries. One way of doing so is to use only local information available to the nodes in the network. In this paper, we evaluate a number of power-aware routing protocols based on local information only. The simulation shows that basing the routing decision on the remaining power of neighboring nodes is not enough by itself. Instead, using the directional value and the sum of power remaining at the next neighbors gives the routing protocol a broader perspective about the condition of the network from a local point of view and enhances the decision process. #### **KEY WORDS** Sensor networks, topology, routing, power aware. ### 1 Introduction Wireless Sensor Networks (WSN) have wide and varied applications. A smart sensor is a collection of integrated sensors and electronics. When these types of sensors are used to form WSN, very powerful, versatile networks can be created and used in situations where traditional wired networks fail. These sensor networks can be used for emission monitoring systems in the harsh environment of automobile exhaust systems or in large buildings for more consistent climate control. There are also countless medical applications, including health monitors and implantable devices, such as a retinal prosthesis [5]. Research is already being conducted with respect to low-power dissipation for deep space missions [2]. Although the space research has concentrated on direct networks, this would be an excellent case where the flexibility of wireless networking could be used. Wireless devices must operate for a long period of time, relying on their battery power. Although many developers have looked at extending the life of a wireless system from a hardware point of view, such as directional antennas and improving battery life, power-aware routing is a relatively new concept in wireless networking. Until recently, most routing protocols in wireless networks have concentrated mainly on establishing routes, and maintain- ing these routes under frequent and unpredictable changes in network topology. The concept of using routing to minimize power usage has only recently been looked at and it has been shown to be moderately successful. It has been proposed that routing packets in a power-aware method will complement hardware-based methods of extending the network's life. The metrics that have so far been devised to minimize power can be grouped into two main categories, power-aware and cost-aware metrics. Power-aware metrics aim to minimize the total power needed to route a message between two different locations while cost-aware metrics look at methods which extend the nodes' battery lifetime. Due to the high cost of communication and low battery power, it is natural to seek decentralized, distributed algorithms for sensor networks. This means that instead of relaying data to a central location that does all the computing, the nodes process information locally. By locally, we mean that the computation of routes should be based on local information that is available to the node from its neighbors only. By doing so we limit the number of messages that need to be sent in the network to discover routes or to make a decision for routing. However, centralized algorithms have the advantages of obtaining global information about the network and obtaining an optimum solution for routing. But due to the limitation of power, the large number of nodes in a sensor network, and the change of power available at the nodes, this is not an efficient way of obtaining information and some of the information will be outdated. In this paper, we focus on designing protocols for stationary regular topologies that increase the life of nodes as well as the overall network. In doing so, we have restricted our protocols to deal with only local information that is available to nodes from their neighbors. The main idea is to request and process data locally and gather information from neighbors on a demand basis. So, a wireless protocol for sensor networks should consider the constraints the network will operate under, such as limited power and only local information available to each node in the network. By using local the information, we limit the number of messages that the network needs to send to update the changes in the network. In the next section, we will discuss some related work that has been done on power aware metrics. In section 4 we will introduce some of the assumptions that were used ^{*}This research was supported in part by National Science Foundation Grants DGE-9870720 and ANI-0086020. in this paper, and in section 5 explain the routing protocol, *DSAP*, which is the basic protocol for this paper. Then, in section 6 we discuss different metrics that are tested and our proposed metrics. Section 7 presents the results of our simulations, where we demonstrate the use of new power-aware metrics. Finally, section 8 summarizes the main results and outlines our future research. #### 2 Related Work In most routing protocols, the paths are computed based on minimizing hop count or delay. When the transmission power of nodes is adjustable, hop count may be replaced by a power consumption metric. Some nodes participate in routing packets for many source-destination pairs and the increased energy consumption may result in their failure. A longer path passing through nodes that have plenty of energy may be a better solution [6]. Singh et al. [6] propose several algorithms for power-aware routing in mobile ad hoc networks. The algorithms in [6] propose to use a function, f(A), to denote node A's reluctance to forward packets and to choose a path that minimizes the sum of f(A) for nodes on the path. This routing protocol [6] addresses the issue of energy critical nodes. As a particular choice for f, [6] propose f(A)=1/g(A), where g(A) denotes the remaining lifetime of the node. The other metrics used in [6] are aimed at minimizing the total energy consumed per packet. However, [6] merely observes that the routes selected when using this metric will be identical to routes selected by shortest hop count routing, since the energy consumed in transmitting (receiving) one packet over one hop is considered constant. In [8] and [9] the authors describe several localized routing algorithms that try to minimize the total energy per packet and/or lifetime of each node. The proposed routing algorithms are all demand-based. These methods use control messages to update the positions of all nodes to maintain the efficiency of the routing algorithms. We are using similar ideas that use power-aware routing but from a local view of the network without sending control messages to request information. Each neighbor will gather local information about each neighbor whenever there is communication with its neighbor and use this information to calculate the possible routes. By doing so the protocol limits the energy consumption because energy consumption occurs in three domains: sensing, data processing, and communication. Communication is the major consumer of energy in a WSN. Pottie and Kaiser [3] showed that communication costs significantly more than processing. So, it is possible to make trade-offs between data processing and wireless communication. Hence, local data processing is crucial in minimizing power consumption in a multihop wireless sensor network [7]. Table 1. Radio Characteristics [1] | Operation | Energy Dissipated | |-------------------------------------------|--------------------| | Transmitter Electronics ($E_{Tx-elec}$) | $50 \ nJ/bit$ | | Receiver Electronics ($E_{Rx-elec}$) | | | $(E_{Tx-elec} = E_{Rx-elec} = E_{elec})$ | | | Transmit Amplifier (E _{amp}) | $100 \ pJ/bit/m^2$ | #### 3 Problem Statement Wireless sensor networks typically have power constraints. The absence of wires implies the lack of an external power supply such as battery packs. Although photovoltaic or other passive energy gathering techniques are possible, these approaches typically provide only a modest amount of operating power. Therefore it is necessary to extend the battery life of individual sensors so that the network can remain functional as long as possible. Due to the limited power that nodes have, we restrict the routing to the local information available to the nodes from their neighbors only. Consider the following network scenario where all sensors are identical and have the same power. Also sensors are aware of their neighbors' power and the direction in which to send the message. From this scenario we want to develop a metric that can be used to route a message from a source to a destination with the aid of local information only. The idea is to evaluate the routing according to this local information without the aid of global information. In this paper, we do not consider the effects of communication with a base station. Since the topology is fixed and known, we assume that the base station can be placed at an appropriate position relative to the sensor network. #### 4 Assumptions In this paper, we assume a simple model where the radio dissipates $E_{elec} = 50 \ nJ/bit$ to run the transmitter or receiver circuitry and $E_{amp} = 100 \ pJ/bit/m^2$ for the transmit amplifier to achieve an acceptable E_b/N_0 (see Figure 1 and Table 1) [1]. To transmit a k-bit message a distance d meters using our radio model, the radio expends. $$E_{Tx}(k,d) = E_{Tx-elec}(k) + E_{Tx-amp}(k,d)$$ = $E_{elec} * k + E_{amp} * k * d^2$ (1) To receive this message, the radio expends: $$E_{Rx}(k) = E_{Rx-elec}(k)$$ $$= E_{elec} * k$$ (2) For these parameter values, receiving a message is not a low-cost operation; the protocol should thus try to mini- mize not only the transmit distance but also the number of transmit and receive operations for each message. We assume that the same transmission power is used to reach any neighboring node and all data packets contain the same number of bits. We assume the following parameters: the maximum transmission range is d=0.5m and the number of bits transmitted is k=512 bits. The topology that we are going to evaluate is a 10×10 2D mesh with a maximum of 8 neighbors (Figure 3). Figure 1. First Order Radio Model Figure 2. Directional 8 Neighbor node ### 5 DSAP The Directional Source-Aware routing Protocol (DSAP) [4] incorporates power considerations into routing tables. The routing works by assigning each node an identifier that places that node in the network. Each node has a unique identifier that is called the directional value (DV) [4]. The DV represents the location of each node in the network with respect to its neighbors. These values can be determined in the setup phase of the network. Figure 3. Routing Using Different Metrics at Round 4000 We assume that the setup phase has been done and the DV has been determined. Based on the features of the DV, we use the protocol that was developed in [4]. For example, in the eight-neighbor case shown in Figure 2, node S would have an identifier of $(n_0, n_1, n_2, n_3, n_4, n_5, n_6, n_7)$. This means that there are n_0 nodes to the edge in direction D-0, n_1 in D-1, n_2 in D-2, and so on. When transmitting a message, the destination node identifier is subtracted from the source node identifier. This gives at most five positive numbers (for a 2D topology with 8 neighbors) that describe in which directions the message needs to move. Negative numbers are ignored. The decision to move in any positive direction is determined by the *directional value* of the nodes in question. Taking each of the neighbor's identifiers and subtracting it from the destination node's identifier computes the directional value (DV). These eight numbers are added together and the one with the smaller number is chosen. If both nodes have the same DV, then one is randomly picked. This is the basic scheme developed for routing messages. For example, consider the source node $S_{2,2}$ with $DV_{2,2}=(2,2,2,2,7,7,7,2)$ and destination node $D_{8,8}$ with $DV_{8,8}=(8,8,8,1,1,1,1,1)$. According to the DSAP algorithm [4], S-D = (-6,-6,-6,1,6,6,6,1), which produces D-3, D-4, D-5, D-6, and D-7 as possible positive directions that the message can be forwarded to, then computes the directional value of each positive direction to find which route to take. By doing so, we get the following values for each direction: 37, 36, 34, 36, and 38, respectively. By choosing the minimum directional value, the message is forwarded in direction D-5, which is obvious from figure 3. The protocol repeats until reaching the final destination, which will have a DV of 0. In the next section we will incorporate different power metrics that can be used to enhance the routing mechanism of DSAP. Table 2. Routing Using Power only | Dead | 1 | 5 | 10 | 20 | 25 | |--------|--------|--------|--------|--------|--------| | Power | 18.68 | 17.46 | 16.26 | 13.53 | 12.67 | | Mean % | 74.72 | 69.83 | 65.03 | 54.12 | 50.07 | | Trans. | 28053 | 33965 | 40142 | 54762 | 59597 | | Recv. | 218816 | 260673 | 301255 | 393283 | 422063 | | STD | 22.20 | 25.56 | 28.04 | 31.39 | 31.53 | | Rounds | 4675 | 5546 | 6281 | 7796 | 8234 | | Drop | 0 | 50 | 177 | 727 | 1059 | ### 6 DSAP and Power Metrics Using local information that is available to each node limits the resources that are available for the routing protocol. Each node knows its neighbors and their DVs. Each node knows the power available at their neighbors and it can calculate the direction of the final destination from the DV. Nodes can calculate the sum of powers from their neighbors and also approximate the number of hops to the destination from the DV. Considering the above information, we notice that the routing protocol is limited by the choices that are available to decide the next hop to advance the packet. From this local information that is available, we can use power only, directional value, directional value and power, the sum of power and directional value, the cost of route and number of hops, and number of hops, power sum, and DV. We shall now describe the paths chosen by the corresponding localized routing algorithms. For this a sample has been taken at round 4000 as shown in figure 3 to compare the different routes each method will take. ### 6.1 Power Only In figure 3, DSAP first calculates the directional value to determine the positive directions and then the packet is forwarded to the node with the maximum power available at that node. As shown in the figure, this routing method may take longer paths because of the power and may even loop in the network without reaching the final destination. To avoid looping, the algorithm keeps track of the neighbor that forwarded the packet to it and tries to avoid that node. ### 6.2 Directional Value In this approach, the algorithm considers only the DV of its neighbors with respect to the final destination. The only information that is available to the source is the IDs of its neighbors. From that the source can calculate the DV of its neighbors with respect to the final destination. The message will be forwarded to the node with the minimum value. As shown in figure 3, node (2,2) takes the direct path to node (8,8) without considering the power available Table 3. Routing Using DV only | Dead | 1 | 5 | 10 | 20 | 25 | |--------|--------|--------|--------|--------|--------| | Power | 13.97 | 12.95 | 12.66 | 10.99 | 10.58 | | Mean % | 55.89 | 51.49 | 50.62 | 43.94 | 42.33 | | Trans. | 50557 | 55405 | 56877 | 65634 | 67911 | | Recv. | 380131 | 415083 | 424983 | 481768 | 495196 | | STD | 23.43 | 25.31 | 25.85 | 27.32 | 27.54 | | Rounds | 10804 | 11537 | 11721 | 12663 | 12867 | | Drop | 0 | 59 | 86 | 472 | 627 | Table 4. Routing Using DV and Power | Dead | 1 | 5 | 10 | 20 | 25 | |--------|--------|-------|--------|--------|--------| | Power | 8.11 | 7.80 | 7.57 | 7.16 | 6.82 | | Mean % | 32.45 | 31.10 | 29.98 | 28.58 | 27.28 | | Trans. | 83160 | 84825 | 86150 | 88795 | 91261 | | Recv. | 576461 | 58699 | 594737 | 607999 | 618842 | | STD | 19.53 | 19.69 | 19.63 | 19.42 | 18.9 | | Rounds | 15078 | 15284 | 15409 | 15599 | 15753 | | Drop | 0 | 10 | 28 | 115 | 242 | at those neighbors. So it may take the shortest path but it may be a costly path that is taken. #### **6.3 Directional Value and Power** In this approach, the algorithm incorporates energy efficiency. This was achieved by considering the maximum available power and minimum directional value when picking which node route to take. Instead of picking the node with the lowest directional value or the maximum power, the directional value is divided by the power available at that node. The smallest value of this power-constrained directional value is the path that is chosen. This allows for a least-transmission path that is also cognizant of power resources, although in some cases a longer path may be chosen if the available power dictates that choice. As shown in figure 3, the path from source (2, 2) to destination (8, 8) is longer than the path taken by using the DV metric only. #### 6.4 Directional Value and Sum of Power In this approach the algorithm incorporates energy efficiency from a different point of view; it uses the directional value and the power available at the surrounding neighbors. Instead of looking at the power at the neighbors of the source it looks one hop beyond these neighbors. This is accomplished by getting the sum of power at a node's neighbors from each neighbor. By doing so, the protocol can have a better choice in picking the next route. Compared to the previous section, the choice of the route may Table 5. Routing Using DV and Power Sum | Dead | 1 | 5 | 10 | 20 | 25 | |--------|--------|--------|--------|--------|--------| | Power | 7.51 | 7.32 | 7.20 | 6.88 | 6.59 | | Mean % | 30.06 | 29.27 | 28.78 | 27.52 | 26.35 | | Trans. | 86166 | 87236 | 87952 | 90009 | 92031 | | Recv. | 596802 | 603401 | 607498 | 617793 | 627136 | | STD | 19.30 | 19.34 | 19.30 | 18.87 | 18.39 | | Rounds | 15720 | 15852 | 15919 | 16072 | 16203 | | Drop | 0 | 5 | 16 | 82 | 176 | Table 6. Routing Using Number of Hops Only | Dead | 1 | 5 | 10 | 20 | 25 | |--------|--------|--------|--------|--------|--------| | Power | 13.23 | 12.68 | 11.94 | 11.06 | 10.15 | | Mean % | 52.90 | 50.72 | 47.78 | 44.24 | 40.62 | | Trans. | 54462 | 57105 | 60900 | 65753 | 70923 | | Recv. | 405459 | 424099 | 449042 | 478724 | 508945 | | STD | 23.33 | 24.35 | 25.57 | 26.59 | 26.83 | | Rounds | 11643 | 12163 | 12806 | 13489 | 14191 | | Drop | 0 | 30 | 143 | 443 | 967 | be different as shown in figure 3. # 6.5 Number of Hops Only This algorithm uses only the number of hops, which can be calculated from the directional value. The number of hops for each direction will give a minimum and maximum number of hops. The algorithm will use the average of those two numbers to make a choice on routing the packet. The packet will be forwarded to the neighbor with the minimum number of hops. From figure 3, we see that for this sample that it is the same as the DV metric. ### 6.6 Hop and Cost In this approach, the algorithm uses the number of hops, which can be calculated from the directional value, and estimates the cost of routing in each direction. The number of hops for each direction will give a minimum and maximum number of hops. The algorithm will use the average of those two numbers and then take the first hop and multiply it by the number of neighbors for the power received and for the rest we estimate the maximum number of neighbors for this topology, which is eight neighbors. For each of these hops, a power transmission is added, because one node will transmit. This will give an estimate of the total power needed to transmit the message from the source to the destination. In figure 3, we see that the protocol takes a different route as shown. Table 7. Routing Using Hops and Cost | Dead | 1 | 5 | 10 | 20 | 25 | |--------|--------|--------|--------|--------|--------| | Power | 12.25 | 11.58 | 10.83 | 9.97 | 9.65 | | Mean % | 48.99 | 46.32 | 43.30 | 39.87 | 38.60 | | Trans. | 58353 | 61374 | 64852 | 68941 | 70542 | | Recv. | 439782 | 462771 | 488786 | 518249 | 529081 | | STD | 23.35 | 24.41 | 25.20 | 25.42 | 25.32 | | Rounds | 5342 | 5608 | 5908 | 6240 | 6364 | | Drop | 0 | 14 | 61 | 201 | 293 | Table 8. Routing Using Hops Power and DV | Dead | 1 | 5 | 10 | 20 | 25 | |--------|--------|--------|--------|--------|--------| | Power | 8.97 | 8.56 | 8.19 | 7.47 | 7.16 | | Mean % | 35.90 | 34.23 | 32.78 | 29.89 | 28.63 | | Trans. | 80195 | 82326 | 84196 | 88131 | 90078 | | Recv. | 545746 | 559967 | 572210 | 596444 | 606889 | | STD | 17.52 | 18.03 | 18.49 | 19.25 | 19.40 | | Rounds | 13159 | 13436 | 13651 | 14038 | 14172 | | Drop | 0 | 19 | 54 | 203 | 319 | ## 6.7 Hops, Cost, DV, and Sum of Power This algorithm takes into consideration all the information that is available to the source and tries to make the decision according to that information. First, calculate the number of hops and estimate the power needed to deliver the packet. Then, calculate the DV and the sum of power at the neighbors. Finally, take the ratio between those two values and pick the one with the minimum value. The packet will be forwarded to that neighbor. As shown in figure 3, this approach takes the longest path to try to conserve energy. #### 7 Performance Evaluation In order to evaluate the performance of DSAP with different metrics, several simulations we run with the various metrics. For each metric that has been tested, we use the same ten randomly generated files that have the requested transmission from source to destination to guarantee the same requests for each different metric. Then, the average of those ten runs has been taken to create the tables. For each table we calculate the total power level remaining for the network, the percentage mean of the power remaining, the total number of transmissions and receptions, the standard deviation of the power, the number of rounds after which a certain number of nodes died, and the total number of requests that have been dropped because of dead nodes. This explains the status of the network using different routing methods. Finally, we look at the condition of the network at a fixed round to evaluate the performance of each method. From tables 2 - 8 we observe the following: - 1. From tables 2 and 7 we observe that the first node died in round 4675 and 5342, and the power remaining in the network is higher than any other metric. But the standard deviation of the remaining power is also higher than the other metrics. In tables 3, 4, 5, 6, and 8 the first node died after round number 10000 and the first two methods have more than 25 nodes dead. That means that using power or cost only as a metric for routing exhausts the power available at some nodes without trying to distribute the power usage evenly among the rest of the nodes in the network. - 2. From these tables notice the amount of energy lost when the first node dies and the 25th node dies. We see that when using the power only metric that the total power lost is higher than with the other metrics. This is because in using power the routing protocol looks for nodes with higher power and tries to exhaust them until they die. - 3. From table 5 observe that the number of dropped simulation messages using the DV and sum of power metrics is less than the other metric that have been used. This is because this method uses the sum of power at the neighbors, which gives the method a broader perspective of the power distribution on future paths. This will conserve the power at the nodes with lower power. In table 9 we want to compare the behavior of the network at a fixed round to see the number of dead nodes and the amount of power remaining in the network. We observe the following: - DV with power and DV with sum of power have no nodes dead for that round. This is because the power is distributed almost evenly among these nodes using the methods. We can see this from the standard deviation of the power. - 2. We observe that the number of dead nodes in power only, cost only and DV is much higher than the other methods and the standard deviation is also high. - We observe that the amount of power remaining in the network for all the methods is close to each other but they differ in the number of dead nodes and the number of dropped messages. ### 8 Conclusions In this paper we discussed the need to make the routing protocols power-aware from a local point of view. Thus, the routing protocol tries to make its decision by what is available from its neighbors only. Basing the decision on the power remaining is not enough by itself. So using the directional value and the sum of power remaining at the next Table 9. Routing Using All Method at 14000 Rounds | Routing | Power | Mean | SD | Dead | Dropped | |----------|-------|-------|-------|-------|---------| | Method | Level | % | | Nodes | Packets | | Power | 8.91 | 35.64 | 27.74 | 40 | 3693 | | DV | 8.39 | 33.54 | 25.70 | 37 | 2271 | | DV P | 9.44 | 37.76 | 18.45 | 0 | 0 | | DV P Sum | 9.64 | 38.55 | 18.09 | 0 | 0 | | Hop | 10.40 | 41.59 | 26.80 | 24 | 808 | | Hop Cost | 6.99 | 27.95 | 21.47 | 40 | 1988 | | Hop P DV | 7.54 | 30.18 | 19.15 | 18 | 192 | neighbors will give the routing protocol a broader perspective about the condition of the network from a local point of view. Our simulations show that using the DV and the sum of power and also using DV with power extends the lifetime of the network. ### References - W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-Efficient Communication Protocols for Wireless Microsensor Networks. In *Hawaii International Conference on System Sciences*, 2000. - [2] C. Patel, S. M. Chai, S. Yalamanchili, and D. E. Schimmel. Power/Performance Trade-offs for Direct Networks. In *Parallel Computer Routing & Communication Workshop*, pages 193–206, July 1997. - [3] G. Pottie and W. Kaiser. Wireless integrated network sensors. *Communication ACM*, 43(5):51–58, May 2000. - [4] A. Salhieh, J. Weinmann, M. Kochhal, and L. Schwiebert. Power Efficient Topologies for Wireless Sensor Networks. In *International Conference on Parallel Processing*, pages 156– 163, Sep 2001. - [5] L. Schwiebert, S. Gupta, J. Weinmann, et al. Research Challenges in Wireless Networks of Biomedical Sensors. In Proceedings of the Seventh Annual ACM/IEEE International Conference on Mobile Computing and Networking (Mobi-Com '01), pages 151–165, July 2001. - [6] S. Singh, M. Woo, and C. Raghavendra. Power-aware routing in mobile ad hoc networks. In *Proc.MobiCom*, pages 181– 190, month 1998. - [7] K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie. Protocols for self-organized of a wireless sensor network. *IEEE Personal Communications*, 7(5):16–27, October 2000. - [8] I. Stojmenovic and S. Datta. Power and cost aware localized routing with guaranteed delivery in wireless networks. In *Proc. Seventh IEEE Symposium on Computers and Communications ISCC*, July 2002 to appear. - [9] I. Stojmenovic and X. Lin. Power-aware localized routing in wireless networks. *IEEE Transactions on Parallel and Dis*tributed Systems, 12(11):1122–1133, November 2001.